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SUMMARY
Nes5-35983
The present memoir has for its objeect to show that the formulas
thus far admitted, are inacceptable, and that it is appropriate to cons-~
truct the relativistic tlermodynamics on new foundations. It 1s specified
in particular, that the termmerature is to be transformed according to the

formula T=7,/V1—f and not T=T,VI1—p.

Abuféd %

1.-INTRODUCTION

Most of relativistic authors, and in particular von Laue [1],
Pauli [2], Tolman [3], Louis de Broglie [4], Moller [5], MeCrea [6],
give the following formulas for the transition from the prover referential
K, (in which the considered thermodynamic system is at rest) to another,
Galilean referential K (velocity v relative to Ko)
_ Ut 807
= Vi g '

v Us + 2%
+ _ e
Ut vi—pg '’

A3
4T =4I, V1 p— \_/lr—_'ﬁ‘;d(Uo""PoVo) ’

dQ= \/l—ﬂ’on,
8=8,, T=TVi—p

* Transformation relativiste de la température et de quelques autres
~randeurs thermodynamiques.



U denoting the internal energy, ¥ the volume, p the uniform pressure
which the system is assumed to undergo, gfis the work supplied by the
system outside, Q the quantity of absorbed heat, S the entropy, T the
temperature.

Others make the distinction between the Planck heat and the cova-
riant heat, but they too transform the Planck heat and temperature according
to the above relations., This viewpoint will be found in the Costa de Beau-
regard work [7] with bibliography.

I intend to show that, except for the tresnsformation of S, these
formulas are erroneous. I shall first of all establish the formulas which
I consijder to be correct; I shall then show for what precise reason the
formulas, subject to criticism, are not acceptable (relativity of the si-~

multaneity).

2, - TRANSFORMATION OF THE WORK OF A UNIFORM PRESSURE ACTING UPON A SOLID

2,1,~ Pressure Parallel to the Velocity. - Let us consider, at

rest within K,, a rectangular parallelipiped, of which the two opposed
bases of surface dS,, are subject to a uniform pressure Po between the
moments of time t ;=0 and t, =T,. There will be no possible confusion
with the same letters, denoting in other paragraphs the temperature.

Let us denote these two bases by the letters A and B, and let Lo
be their distance for to = 0, If the parallelipired surrounds an elastic
medium at the instant t, = T,
the faces will have shifted by
Aly. The work supvlied between

0 and t, has for value, in K,

47, = 2p,d8, Al, = PAY, .

The impulsion supplied
is zero.

Let us relate Lhe phe=

Fig. 1.

nomenon to a referential K,
relative to which the parallelipiped has the velocity 7V, normal to faces

A 2nd B (we shall subsequently consider the other case). The only clear




and correct procedure consists in transforming the coordinates of the

punctual events., Here the events are as follows : (Fig. 1):

the pressure begins in A Zo=0 t,=0,
" n 1 in B Zo =1, t,=20,

the pressure ends in A z, = Al, to="T,
" 1 v d4in B Ty = ly— Al, to="T,.

Let us transform these coordinates with the foraulas

e Ty + iy ¢ = t, + (v/c*) .
Vi< g Vi-p
In KX they become:
the pressure begins in 4 z=20, t=0,
l v/e*) 1,
" " " in B m=7ﬁ’ t=\(/1I__.—ﬁ_:’
Aly+ oT, T, + (v/er) Al,
. . end _BhT % — 20T (0/0) 0k
he pressure ends in A r N B ’ ¢ \/1‘_7:; ’
l,— Al + vT, Ty + (v/e*)(l, — Al)
i B = ———— = L
n " " n v vi-pg '’ f \/1—:‘?

Let us compute this work. In order to tramsform the forces, and

since here, within K,, the point of application shifte , we must utilize
the formulas

(vugy/c?) Yo + (v/c?) %esZo

X=X¢+

1 4 vu,./c?
V= o 1= vjor
Y= — Yo 9 Z = Zo !
1 + vu,,/e? 1 4+ vuyjet

denocting by u_ the velocity of the point of applying of forces. In the

~o
present case
uu=“o-=0) Yo=zo=07

X\____.Xo, Y=Z:=0.



Thus, the force which exerts itself upon the faces A and B has

in X the value pS,. Over the face A we have the work

Al, -- vT,
Va=ndR TR
and over B

— Aly 4 oT
w,=—podso—\/—i"__——[;—°.

The total work in K is

. 2podSoAlo — _I:)_EAVQ
T oVi—p ViI—p

Thus we obtain the trarsformciion relation

I = .
vVi—p

let us now provide for the intervention of the volumes ¥  and
¥ —d¥ wyhich corresmond by sinultancous observation in K to the volumes

¥, and ¥,— AY,. \le then have

and not p 4¥ , as is often written,

We shall further analyze the phenomenon. The body is at rest in K,
which is in agreement with a resultant force and impulsion equal to zero.
In K the solid has a uniform velocity. But, because of energy inertia, its

mass inecreases and the quantity of motionm underroes thus the accretion

To thnt effeet an iroulse of ecqual value is required in the direc-

tion of V. Indeed, the force acting upon the face A provides the impulse

T;, 'L (”,’c’) Al'.‘

Do T A

0 ‘\/]T——“ B_a




and the one acting upon the face B is

T, — (v/er)Al,

— Do dS, \/1__ ﬂ’

Wle thus obtain the required value.

2.2 - Pressure Bormal to Velocity.- Let us consider the case

Fige 2 where the velocity is parallel to ps. In K, we always have

4T, = 2p,8, Al, = p, AY, .

For the events, in K

o

the pressure begins in 4 z,=0 Yo =10 =0,
" " n in B z,=0 Yo=1h t=0,

the pressure ends ir A z=0 Yo = Al, h=1T,,
n " n in B z,= Y% = Lh—Al, th=1T,.

In the referential K

the pressure begins in A =0 y=0 t=0,

" 1" " in B =0 y=1 t=0,



. T T
the pressure ends in 4 r= 220 _ t= L
P v1— 2’ !/—Alo, ) /—l—ﬂ”
vT, T
" n n in B z=\/f_—oﬂz, y=lo—Alo, t=\/l—;ﬁ’.

Let us compute this work, In the transformation formulas of the

force coumponents, we have here

Uos == Upy = 0, X0=Zo=0’

L
=7,
and subsequently
v Al —_
=ar, Yo Y=Y, V1—ps.

The forces normcl) to the velocity supply the work
2Y,V1— B2 Al = 2p,d8,V1— f2Al, = p, A¥:V1— p.

The forces parallel to the velocity provide the work

2v Al, vT, —2va PodS, g

FT, CVIsp e ey PAY

Hence, the total work is

2 _iﬁ,’,, I N ) AY,
7= % (m + ) =5

and finally

a7, pAY”
dsq.—\/l_ﬂ’::l__ﬁ"

We should note the entirely remarlable role played in K by the

component of the force parallel to the velocity (component that does not
exist in K,).

Let us consider now the question of impulses. The quantity of motion
of a solid in the state of uniform velocity undergoes the accretion

49 47,
V—=0 ——=.
at c"/l—ﬂ’

An ecual izmulse is required in the direction of V.



But we have a force X that acts in A and B during the time
T,/V1—B* o2nd h~nce the impulse

20 Al, — T, _ v PAY, v 47,
o T, W B e =G s T e v

Thus all is in order. Note that the normnl impulse to the speed
is zero since the same force Y acts during the same time Td\/l——ﬁ’ in the

oprosite directions over the two faces. Therefore, there is neither irmpulse

nor transverse quantity of motion.

3., - TRANSFORMATION OF INTERNAL ENERGY AND OF THE QUANTITY OF HEAT

If W is the total energy, the total mass of the solid is W,/cz.

The quantity W 4is thus transformed as a mass

W, (1)

By virtue of equivalence the qnatity of heat is transformed as a

work

Q=\%°_é;.
At any rate, it can be demonstrated directly starting from the
definition of Q. The quantity of heat is a diluted kinetic energy.
Assume that at a given moment of time a group of particles move in
a ¢ otic fashion about their inertia center G, fixed in a referential K.
The velocity u of one of the particles is at the angle « with the axis Ox,.

With respect to another referential K, the total energy has for expression

W —— m_r? _~_1_i(lv./cz,)_c£si,__ .
T V11— wderV1— v¥c?
This expression is obtoined by writing W ==mc2 for K and by
transforming the velocity of the particle.
For the aggregate of particles we have the total energy:



1 myC? i v - MoU COS &
T Vis v¥er T V1— u¥c? Vi— et T V1— utfc

By virtue of the fixedness of G, we have in K,

MU,

T 2y My,
——————=, — == =0 =0
2 V1— ue? ZVI— u3/c? ’ zVl— u3/c?

Hones rooults (1). In other respects, if Y E, ond Y E, denote the
total kinetic energy,

Qo=onc, U0=Wor
1

s e

-—1) > woet.

Hence the transformation of @ and U.

L, -~ ENTROPY AND TEMPERATURE

All the authors show, by referring to its statistical interpretation,
that the entropy is an invariant

§=3,.

If we wish to preserve an invariant form to the Carmnot principle,
we must transform the temperature arcording to the formula
Vi g

This transformation is, at any rate, obtainable directly starting

T

from the definition of the teuperature. However, this is not a proper place
for that definition to be discussed in the general case, But everyone admits
that in case of perfect gases

i 4 - At

To =kE’M T:k,Ec-—moc,( - L _1) .
V1i_gs




5. = INVARTANT FORM OF THE EGUATICN FOR PERFECT GASES

This equation is written in proper referential
poro=RTo-

In another referential, and truosting R as a constant, we have

6o = QUADRIVECTORS

With the above transformations, the principle of equivalence has

the invariant form
dQ=d4d0—-47 .

Let us introduce the following quadrivectors :
qundrivector-force XK' of components

K& = -—F‘ K¢ = -'-
[4

/1 — 5; !

being the force and t, the proper time;

quadrivector-impulse II‘ of components

U - ,
I = —c;’V‘ (¥ being the quadrivector-velocity)
guzdrivector-heat
Q
e=2y.

The equivalcnce principle is written
K'dt, = T — dQ*.
By defining a ouadrivector temperature
T = T,V*
the Carnot principle is written

dQ*< d8,T¢.




7. -REMARK

Remark. -~ One might also have toinvolve the densities of heat

and entropy and the corresponding quadrivectors
¢=¢V, d=aV".
This would impart to the Carnot principle the expressions

3¢dQ<— i ﬁj@ 7,7%,

3,q’

i~ 2

0,0 > T,

being the element of volume with four dimensions.
We might also write

., 49,
.t A4
0,0'dR>ic T

form due to Tolman and which remains valid with the new transformations.

But the preceding expressions appear to be more interesting.

8. = CEARACTERISTIC FUNCTIONS OF A MOBILEL SYSTEM

They have for definition and for the respective transformation
formulas

enthalpy :

pY
H=U+ —=,, H =
1—p Vi-gs

free energy:

thermodynamic votential or free enthalpy:

—T_ P _ g pg_ 4 BT b= )
P=U—I8+ ;g =H—T8=d+ 0, b= =

9, - BIACK RADIATION

Assume an inclosed space of volume % containing black radiation

and endowed with a velocity . The preceding authors give the following



ll.

formulas for the total energy W and the immulse I

1+ B%3 I—é a ¥ T¢ v

W=l T gy TT 30—

These fornmulas are due to Mosengeil; they were odopted by the
already named authors (von Laue, Moller, etc.). With my transformations

I am led to replace the abtove expressions by

W= (1— ) a ¥ T*'= Vi—p ’

v
I = (1— ﬁz)aOVT4E;.
The coefficient a, is defined by the Stefan law
= ¥,a,T .

10, - CRITICAL RFMARKS.

a2) One may see that the divergence between my results and the pre-
vious ones originates essentially in the transformation of d #. The pre-
ceding authors utilize incorrect formulas for the transformation of the
force; they do rnot toke account of the fact that even the proper referential,

the point of appliance of th: force, is mobile.

At any rate, the new formulas are far more satisfactory. It is indeed
natural in relativity that W, @ and T transform themselves as a mass or

as an enerry.

b) We must beware, however, not to consider my text as rejecting

the heat Qp and the Planck temperature T at 211 in order to adopt the

P
covariant heat Q and temperature T. Indeed, the preceding authors write,
for examvle,

dS=‘%, Tp=T,V1— g2,

Qr#Q T1=T7 QP=Qo”1"ﬂz



12,

whereas I write
_dor g T
T’ V1—p®

@
P=Qv Tp:Tv Qr“'\/l—:—'ﬂz‘

ds8

Thus, I do not reject one of the categories of concepts, but I
show that both categories are identical. Finally, one should not assimilate
my temperature T to the temperature ¢ =1/T utilized by certain authors,
The utilization of W seems to me useless; but if it is used, it must b=

transforued according to
= YoV1— p2
whereas other previous authors write

. == 'po -
YT Vice

¢) Schlomka [8] states that both, the heat and the temperature
are invariants. To show this he considers in K  two moving bodies of iden-
tical proper mass m,, endowed with equal and opposed velocities. Prior to

the impact we have in K, the imoulse and the energy

p*=0, W = 2m,*+ W,.

r

In another referential X

2my + W/e?

_ 2mec® + E
Vie vyjer

hav=rrr

After an ineloctic inpact the two moving bodies remain at contact;

the new prover mass then is M,, so that
M,c* =2me*+ W,.

We then may consider that the kinetic energy transformed itself

(28

nte heat of prover value o

— YUe
Yo = " e~

We verify that the difference of kinetic energies in K, prior and



13.

after the impccet, is an invariant, but this difference is not equal to

the quantity of heat, as believed by Schlomka.

Indeed, the totzl energy has for exnression

ct.

S—

e B o

. . L - A 0
We must consider as heat in K th: sum of the terms containing W

oo _ o

T Vio vt V1— oer

The heat is eru 'l to the ¢iflerence of the proper masses plus the
kinetic encrny of t:..t difference. in other words, part of the kinetic

energy after the impuct constitutes heat in motion.

The Schlomka error consists in not considering the kinetic energy
of the heat, but only of energy at rest. In this case one might als~ say
that the mass is an invariant; but this would be language abuse, for with
thet sort of language any physical quantity could be an invariant.

Thus, the conclusion relative to T is also to be rejected.

sxxx THE END sxx=*

Contract No.NAS=-5-3760 Translated by ANDRE L. BRICHANT

Consultants & Designers, Inc. on 1 and 2 November 1965
Arlington, Virginia
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